Extensions 1→N→G→Q→1 with N=C323Q16 and Q=C2

Direct product G=N×Q with N=C323Q16 and Q=C2
dρLabelID
C2×C323Q1696C2xC3^2:3Q16288,483

Semidirect products G=N:Q with N=C323Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
C323Q161C2 = S3×Dic12φ: C2/C1C2 ⊆ Out C323Q16964-C3^2:3Q16:1C2288,447
C323Q162C2 = D6.1D12φ: C2/C1C2 ⊆ Out C323Q16484C3^2:3Q16:2C2288,454
C323Q163C2 = C24.3D6φ: C2/C1C2 ⊆ Out C323Q16964-C3^2:3Q16:3C2288,448
C323Q164C2 = Dic12⋊S3φ: C2/C1C2 ⊆ Out C323Q16484C3^2:3Q16:4C2288,449
C323Q165C2 = D12.29D6φ: C2/C1C2 ⊆ Out C323Q16484-C3^2:3Q16:5C2288,479
C323Q166C2 = Dic6.29D6φ: C2/C1C2 ⊆ Out C323Q16484C3^2:3Q16:6C2288,481
C323Q167C2 = D12.22D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:7C2288,581
C323Q168C2 = D12.8D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:8C2288,584
C323Q169C2 = S3×C3⋊Q16φ: C2/C1C2 ⊆ Out C323Q16968-C3^2:3Q16:9C2288,590
C323Q1610C2 = Dic6.9D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:10C2288,592
C323Q1611C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:11C2288,577
C323Q1612C2 = Dic6.D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:12C2288,579
C323Q1613C2 = D12.24D6φ: C2/C1C2 ⊆ Out C323Q16968-C3^2:3Q16:13C2288,594
C323Q1614C2 = D12.15D6φ: C2/C1C2 ⊆ Out C323Q16488-C3^2:3Q16:14C2288,599
C323Q1615C2 = D12.27D6φ: trivial image484C3^2:3Q16:15C2288,477


׿
×
𝔽